Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance.

نویسندگان

  • J B Broderick
  • T V O'Halloran
چکیده

We show here that purified chlorocatechol dioxygenase from Pseudomonas putida is able to oxygenate a wide range of substituted catechols with turnover numbers ranging from 2 to 29 s-1. This enzyme efficiently cleaves substituted catechols bearing electron-donating or multiple electron-withdrawing groups in an intradiol manner with kcat/KM values between 0.2 x 10(7) and 1.4 x 10(7) M-1 s-1. These unique catalytic properties prompted a comparison with the related but highly specific enzymes catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase. The chlorocatechol dioxygenase gene (clcA) from the Pseudomonas plasmid pAC27 was subcloned into the expression vector pKK223-3, allowing production of chlorocatechol dioxygenase to approximately 7-8% of total cellular protein. An average of 4 mg of purified enzyme has been obtained per gram of wet cells. Protein and iron analyses indicate an iron stoichiometry of 1 iron/57.5-kDa homodimer, alpha 2Fe. The electronic absorption spectrum contains a broad tyrosinate to iron charge transfer transition centered at 430 nm (epsilon = 3095 M-1 cm-1 based on iron concentration) which shifts to 490 nm (epsilon = 3380 M-1 cm-1) upon catechol binding. The resonance Raman spectrum of the native enzyme exhibits characteristic tyrosine ring vibrations. Electron paramagnetic resonance data for the resting enzyme (g = 4.25, 9.83) is consistent with high-spin iron (III) in a rhombic environment. This similarity between the spectroscopic properties of the Fe(III) centers in chlorocatechol dioxygenase and the more specific dioxygenases suggests a highly conserved catalytic site. We infer that the unique catalytic properties of chlorocatechol dioxygenase are due to other characteristics of its substrate binding pocket.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol.

The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code...

متن کامل

Expression, purification and kinetic characterization of recombinant benzoate dioxygenase from Rhodococcus ruber UKMP-5M

In this study, benzoate dioxygenase from Rhodococcus ruber UKMP-5M was catalyzed by oxidating the benzene ring to catechol and other derivatives. The benzoate dioxygenase (benA gene) from Rhodococcus ruber UKMP-5M was then expressed, purified, characterized, The benA gene was amplified (642 bp), and the product was cloned into a pGEM-T vector.The recombinant plasmid pGEMT-benA was digested by d...

متن کامل

Oxygenated form of protocatechuate 3,4-dioxygenase, a non-heme iron-containing dioxygenase, as reaction intermediate.

A short-lived new spectral species of protocatechuate 3,4-dioxygenase, a trivalent non-heme iron-containing enzyme, was observed in the early stage of the reaction. This new spectral species was characterized by a broad absorption band with a maximum between 500 and 520 rnp, distinct from those of the enzyme or the enzyme-protocatechuic acid complex. It could be demonstrated only in the presenc...

متن کامل

Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases

The human heme enzymes tryptophan 2,3-dioxygenase (hTDO) and indoleamine 2,3 dioxygenase (hIDO) catalyze the initial step in L-tryptophan (L-Trp) catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease path...

متن کامل

Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system

Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 30 29  شماره 

صفحات  -

تاریخ انتشار 1991